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Particle Aspects of Kink Interactions 

N e m a t u l l a h  R i a z i  ! 

Received September 28, t992 

A simple method to compute the interaction between moving solitons in 1 + I 
dimensions is presented. Particle aspects of these field configurations are dis- 
cussed and the interactions of sine-Gordon and q~4 kinks are worked out as 
examples. The ground-state energy of a kink in a large box is also derived. 

1. INTRODUCTION 

Topological classification of nonlinear field equations which are of 
interest in classical as well as quantum field theories can be traced back to 
Skyrme (1958), Finkelstein (1966), and Coleman (1977). 

It is well known that soliton solutions of such equations behave like 
interacting particles. For example, if free, they move uniformly as localized 
packets of energy and momentum. They usually retain their identities even 
after they undergo interactions with other solitons or a background field. 
Topological charges can be attributed to them which obey a conservation 
law (see e.g., Rajaraman, 1982). Unlike ordinary conservation laws which 
follow from underlying symmetries of the field Lagrangian, topological 
charges come from topological reasons and boundary conditions. 

Interesting enough is the fact that a suitable single-field Lagrangian 
can lead to well-defined particlelike objects (solitons) together with their 
interactions. Examples also exist for the case of fields with more than one 
degree of freedom. The basic idea of this kind has been quite fruitful in the 
description of strong interactions between hadrons. There is even a hope 
that some type of nonlinear theory will eventually lead to an explanation of 
elementary particles like quarks or leptons which at present are introduced 
as sources in most theories (Skyrme, t988). In this paper we derive a 

~Department of Physics, Shiraz University, Shiraz 71454, Iran. 

2155 

0020-7748/93/1100-2155507.00/0 �9 1993 Plenum Publishing Corporation 



2156 Riazi 

simple, interacting particle Lagrangian from a general Lagrangian density 
which admits topological solitons as their solutions, and apply the idea to 
find the interaction between moving kinks of the sine-Gordon and r 
equations. We also manage to calculate the ground-state energy of a kink 
confined in a large box, when suitable boundary conditions are applied at 
the box walls. 

2. INTERACTING PARTICLE LAGRANGIAN 

Consider the Lagrangian density (c = 1 is assumed) 

= 1 (~r 2 1(0r 2 
2 \ ~t ] - 2 \ - ~ x  ] - V(r (1) 

with V(r having several degenerate vacua. A well-known example is 
V(qS) = 1 -cos (0) ,  which leads to the sine-Gordon equation. We assume 
the existence of topological solitons ~bs(~ ) with ~ = x - v t  which are 
solutions of the field equation 

(2) 
&2 c~x 2 0r 

derived from the Lagrangian (1). We can defind a current ju  according to 
(Ryder, 1985) 

J"  = eu" 0x v (3) 

which satisfies the conservation law OJ~'/Ox" = 0, with jo the conserved 
topological charge density. The total charge is obtained via 

Q = jo dx = [r + oo) - r - oo)l (4) 
oO 

in which r  and r  correspond to two degenerate vacua of the 
field q~. 

We now embed the soliton in a weak background field ~(x, t) and 
calculate the total Lagrangian 

L= ~ ~ t J - - Z k ~ x  +~x} v(r dx (5) 

is assumed to be of the same nature as r and weak enough such that r 
is not distorted appreciably. Up to the first order in the ~-interaction terms, 

L ~- L, - 2rcQ ~x - 27zQv (6) 
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in which 

1 - - v(~.)j d. 

= dx - H,  = - m ( 1  - v2) l/2 (7) 
¢t) 

Hs is the total free-soliton Hamiltonian 

" =  . + tv) + 
L, is clearly the Lagrangian of a free, relativistic particle of (classical) rest 
mass m - H , ( v  = 0 ) .  ~, = 1 1 ( 1  - v2) 1t2 as usual. Note that we have excluded 
the free background field Lagrangian L¢,, 

k , =  _ L2t, at } - ] t a x  ) j 

Also note that 

at at dx= co at ~ & - ~ a ~  

~- - 2=Qv ~Tt (9) 
x$ 

In the same way 

_ 8 - 7 &  ~x  (10) 

In deriving (9) and (10), we have assumed that the soliton "size" is so small 
that across it, O~/Ot and a~/Ox can be taken as approximately constant and 
equal to their values at x = x,. One should also note that 

v(@. + ~,) ds ~_ v (¢O dx + q,(x,) s -  dx 
c l O  ~ ¢ t ~  

1 2 f -® a2v(@,) + 5 ¢' (Xs) ~ - ~  a@----{-, dx + . . .  

The second term vanishes if V(@) is symmetric between the two degenerate 
vacua at @(oo) and @(-co) .  For  example, if V ( C ) = l - c o s @  and 
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~b~ = 4 t g -  1 e x, then 

~-~ dx = ~ sin(4 t a n -  l e ~) d x  = O. 

The third term is ignorable,  because it is o f  second order  in 0. The  particle 
aspect  o f  the soliton is nicely evident f rom the Lagrangian  (6). C o m p a r e - -  
just  for  the sake o f  s imi l a r i t y - -wi th  the Lagrang ian  o f  a relativistic 
charged particle in an electromagnet ic  field 

L = - m (  1 -- v 2) 1/2 _ q~b + qv"  A 

The two interact ion terms in the Lagrang ian  (6) enable us to calculate the 
force exerted on a moving  soliton by another  soliton and /or  a weak 
background  field. The  Lagrang ian  (6) leads to the following "par t ic le"  
equat ion o f  mot ion:  

dPdt 2rcQ( 020 020 "~ - \~x2-t-v~--~t)~,_ ( l l )  

in which p = mTv. 

3 .  I N T E R A C T I O N  O F  S I N E - G O R D O N  K I N K S  

Equat ion  (2) with V(~b) = 1 - cos ~b gives the wel l -known s ine-Gordon  
equat ion  which possesses kink (ant ikink)  solutions 

~bs(~) = 4 tan -1 e -+~ (12) 

with topological  charges Q = + 1 ( -  1). No te  tha t  we have absorbed  the 
usual constants  in the dimensionless variables ~b and 4- 

Consider  an ant ikink ~bg initially at  rest at  x = 0, and a kink ~b k 
moving  initially with velocity v at  xs, 

q~g = 4 t a n -  1 e - x  

~b k = 4 tan - l  e ~(x-vt-x,) (13) 

In the example  we are considering, m = H,(v = 0 ) =  8, and ~bg plays the 
role o f  0(x,  t) at  x = x s. The  calculat ion of  dp k/dt  is s t ra ight forward and 
we get 

@k 
- -  = - 4 r e  tanh(xs) sech(x,) (14) 
dt 

Applying  (11) to calculate the force o f  k on f at  x = 0 and t = 0, we get 

dp~ 
- 4~ tanh(yx,) sech(yx,) (15) 

dt 
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We obviously recover Newton's third law for the static case v = 0. Note 
also that the force is attractive a n d f ~  8he -xs for xs >> 1. 

The interaction of  kinks in the r model 

{r = r tanh[(r - -  vt - Xo)]} 

with V(r = I 2 ~(r _ r can be worked out in the same way. Straightfor- 
ward calculation yields 

dpk=dt - 2 r  l+v2)~  t anh~sech2~  

= (2r ?x0 ) ,/2 (16) 

for the force exerted by an antikink at x = Xo moving at a velocity - v ,  on 
a kink at x = +Xo moving at a velocity +v.  For  large interkink distances 
(R = 2Xo) and in the static (v = 0) case, (19) reduces to 

apk 
- -  ,~ - 8r 4 exp[ - (2r 1/2] (17) 
dt 

which agrees with expressions obtained by others (see, e.g., Perring and 
Skyrme, 1962; Rajaraman, 1977; and Manton, 1977, 1979). The interkink 
potential leading to (16) [s actually very similar to a one-meson exchange 
potential which is derived from the corresponding quantum field theory 
and the one-meson-exchange Born amplitude (Rajaraman, 1982). 

4. KINK IN A BOX 

In this section we calculate the ground-state energy of  a kink in a box 
with inpenetrable walls at x = + L. That is, we impose proper boundary 
conditions at x = + L. 

For  a sine-Gordon kink this means r = 2n at x = + L  and r = 0 
at x = - L ,  while for r  kinks with V(r l 2 = z ( r  -r  2 we impose 
r _+ L) = +_ r For  a static kink at x = 0 and a large box (L >> 1), r is 
slightly different from a static kink solution: 

r = 4 t an -  1 e x + 6(x) (18) 

Up to the first order in 6, we have 

E = m +  + ~ 6  dx (19) 

where m = H s (v = 0) for a free kink as before. Performing one integration 
by parts, we get for the ground-state energy 

6 E - ~ E - m = a ( x )  _ - L 6 ( x ) ~ d x +  L 6 ( x ) ~ a x  (20) 
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The second and third terms cancel each other by virtue of the equation 
d2dp/dx 2 = OV(rk)/&P for ~s. In this way we easily get 6E without any need 
to solve the equation for 6(x), because 6(x) at x = +L  is nothing but 
~b~(+L) minus boundary values of ~ (2~ and 0 for sine-Gordon and +~b0 
for ~4 kinks). This procedure leads to 6E ~- 32e-2L for sine-Gordon kinks 
and 6E ~- 2x/~ r 5/2 exp[-4(~o/2) I/2L] for ~b 4 kinks. 

5. CONCLUSION 

A simple method for the calculation of soliton interactions in the weak 
background field approximation was presented, exploiting similarities with 
classical particle mechanics and particle interactions. Applicability of the 
method was examined in the case of sine-Gordon and q~4 fields. 

We also calculated the (classical) ground-state energy of kinl~s in a 
large box. 
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